Determination of Angular Distribution of Bremsstrahlung Spectral Temperature Measured at the Centre Position of Electron Cyclotron Resonance Ion Source
Corresponding Author(s) : Mwingereza J. Kumwenda
Journal of Humanities & Social Science (JHSS),
Vol. 10 No. 4 (2021)
Abstract
This study aims at determining azimuthal angular distribution of bremsstrahlung spectral temperature measured from 28-GHz Electron Cyclotron Resonance Ion Source (ECRIS), using data obtained from the Busan centre of Korea Basic Science Institute (KBSI). Bremsstrahlung photons of the angular distributions from 28-GHz ECR Ion source at the KBSI were measured in three azimuthal angles for the first time. Three round type NaI(TI) scintillation detectors were used to measure the angular distributions of the bremsstrahlung photons emitted at the centre position of the ECRIS at the same time. Monte Carlo simulation based on Geant4 package was performed to take the geometrical acceptance and energy-dependent detection efficiency into account due to large nonuniformity in the material budget. True bremsstrahlung energy spectra from the 28-GHz ECR ion source were obtained using the inverse-matrix unfolding method. The unfolding method was based on a full geometry of the Geant4 model of the ECRIS plasma. Based on the results obtained, it was observed that the maximum spectral temperature was at angle 30o of the NaI(TI) detector D1 for all three detector configurations. It is interesting to observe that the spectral temperature for detector D1 at an angle 30o is in coincidence with one of the maximum angles of the ECRIS plasma shape.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Barue C., A. Briand, A. Girard & G. Briffod. 1998. Hot Electron Studies in the Minimafios ECR Ion Source. Review of Scientific Instruments, 63: 2844. Benitez, J., C. Lyneis, L. Phair, D. Todd & D. Xie. 2017. Dependence of Bremsstrahlung Spectral Temperature in Minimum-B Electron Cyclotron Resonance Ion Source. IEEE Transactions on Plasma Science, 45(7): 1746–1754.
- Mwingereza J. Kumwenda
- JEHS, Volume 10 Number 4 , 202 1
- Kumwenda, M.J. 2020. Comparison of Experimental and Monte Carlo Simulation of Angular Distributions of Bremsstrahlung Photons from 28–Ghz Electron Cyclotron Resonance (ECR) Ion Source. Tanzania Journal of Science. 46(2): 449–459. Knoll, G.F. 1999. Radiation Detection and Measurement. 3rd Ed. John Wiley & Sons, Inc. Mironov, V., S. Bogomolov, A. Bondarchenko, A. Efremov & V. Loginov. 2015. Numerical Model of Electron Cyclotron Resonance Ion Source. Physics Review ST Accelerator Beams, 18: 123401. Mironov, V. & J.P.M. Beijers. 2009 Physical Review Special Topics - Accelerators and Beams 12: 073501. Noland, J.D. 2011. Measurements of Plasma Bremsstrahlung and Plasma Energy Density Produced by Electron Cyclotron Resonance Ion Source Plasmas, PhD thesis, University of California. Noland, J., J.Y. Benitez, D. Leitner, C. Lyneis & J. Verboncoeur. 2010. Measurement of Radial and Axial High Energy X-Ray Spectra in Electron Cyclotron Resonance Ion Source Plasmas. Review of Scientific Instrument, 81: 02A308. Park, J.Y., S. Choi, B.S. Lee, J.H. Yoon, J.W. Ok, B.C. Kim, … & M.S. Won. 2014. Superconducting Magnet Performance for 28 Ghz Electron Cyclotron Resonance Ion Source Developed at the Korea Basic Science Institute. Review of Scientific Instruments, 85: 02A928. Park, J.Y., S. Choi, B.S. Lee, J.H. Yoon, J.W. Ok, B.C. Kim, … & M.S. Won. 2016. First Results of 28 Ghz Superconducting Electron Cyclotron Resonance Ion Source for KBSI Accelerator. Review of Scientific Instruments. 87: 02A717. Zhao, H.Y., W.H. Zhang, Y. Cao, H.W. Zhao, W. Lu, X.Z. Zhang, … & D.Z. Xie. 2010. Measurements of Bremsstrahlung Radiation and X-Ray Heat Load to Cryostat on SECRAL. in Proc. ECRIS’10, Grenoble, France, Paper TUPOT009: 134–136.
References
Barue C., A. Briand, A. Girard & G. Briffod. 1998. Hot Electron Studies in the Minimafios ECR Ion Source. Review of Scientific Instruments, 63: 2844. Benitez, J., C. Lyneis, L. Phair, D. Todd & D. Xie. 2017. Dependence of Bremsstrahlung Spectral Temperature in Minimum-B Electron Cyclotron Resonance Ion Source. IEEE Transactions on Plasma Science, 45(7): 1746–1754.
Mwingereza J. Kumwenda
JEHS, Volume 10 Number 4 , 202 1
Kumwenda, M.J. 2020. Comparison of Experimental and Monte Carlo Simulation of Angular Distributions of Bremsstrahlung Photons from 28–Ghz Electron Cyclotron Resonance (ECR) Ion Source. Tanzania Journal of Science. 46(2): 449–459. Knoll, G.F. 1999. Radiation Detection and Measurement. 3rd Ed. John Wiley & Sons, Inc. Mironov, V., S. Bogomolov, A. Bondarchenko, A. Efremov & V. Loginov. 2015. Numerical Model of Electron Cyclotron Resonance Ion Source. Physics Review ST Accelerator Beams, 18: 123401. Mironov, V. & J.P.M. Beijers. 2009 Physical Review Special Topics - Accelerators and Beams 12: 073501. Noland, J.D. 2011. Measurements of Plasma Bremsstrahlung and Plasma Energy Density Produced by Electron Cyclotron Resonance Ion Source Plasmas, PhD thesis, University of California. Noland, J., J.Y. Benitez, D. Leitner, C. Lyneis & J. Verboncoeur. 2010. Measurement of Radial and Axial High Energy X-Ray Spectra in Electron Cyclotron Resonance Ion Source Plasmas. Review of Scientific Instrument, 81: 02A308. Park, J.Y., S. Choi, B.S. Lee, J.H. Yoon, J.W. Ok, B.C. Kim, … & M.S. Won. 2014. Superconducting Magnet Performance for 28 Ghz Electron Cyclotron Resonance Ion Source Developed at the Korea Basic Science Institute. Review of Scientific Instruments, 85: 02A928. Park, J.Y., S. Choi, B.S. Lee, J.H. Yoon, J.W. Ok, B.C. Kim, … & M.S. Won. 2016. First Results of 28 Ghz Superconducting Electron Cyclotron Resonance Ion Source for KBSI Accelerator. Review of Scientific Instruments. 87: 02A717. Zhao, H.Y., W.H. Zhang, Y. Cao, H.W. Zhao, W. Lu, X.Z. Zhang, … & D.Z. Xie. 2010. Measurements of Bremsstrahlung Radiation and X-Ray Heat Load to Cryostat on SECRAL. in Proc. ECRIS’10, Grenoble, France, Paper TUPOT009: 134–136.